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1. Overall summary and statistics 

Abstract 

The objectives defined for this study were to: (1) develop a heat-pulse sensor and a heat-transfer 

model for leaching measurement, and (2) conduct laboratory study of the sensor and the 

methodology to estimate leaching flux. 

In this study we investigated the feasibility for estimating leachate fluxes with a newly designed 

heat-pulse (HP) sensor, combining water flux density (WFD) with electrical conductivity (EC) 

measurements in the same sensor. Whereas previous studies used the conventional heat pulse 

sensor for these measurements, the focus here was to estimate WFD with a robust sensor, 

appropriate for field settings, having thick-walled large-diameter probes that would minimize 

their flexing during and after installation and reduce associated errors. 

The HP method for measuring WFD in one dimension is based on a three-rod arrangement, 

aligned in the direction of the flow (vertical for leaching). A heat pulse is released from a center 

rod and the temperature response is monitored with upstream (US) and downstream (DS) rods. 

Water moving through the soil caries heat with it, causing differences in temperature response at 

the US and DS locations. Appropriate theory (e.g., Ren et al., 2000) is then used to determine 

WFD from the differences in temperature response.  

In this study, we have constructed sensors with large probes and developed numerical and 

analytical solutions for approximating the measurement. One-dimensional flow experiments 

were conducted with WFD ranging between 50 and 700 cm per day. A numerical model was 

developed to mimic the measurements, and also served for the evaluation of the analytical 

solution. For estimation WFD, and analytical model was developed to approximate heat transfer 

in this setting. The analytical solution was based on the work of Knight et al. (2012) and Knight 

et al. (2016), which suggests that the finite properties of the rods can be captured to a large extent 

by assuming them to be cylindrical perfect conductors. 

We found that: (1) the sensor is sensitive for measuring WFD in the investigated range, (2) the 

numerical model well-represents the sensor measurement, and (2) the analytical approximation 

could be improved by accounting for water and heat flow divergence by the large rods.  
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Contribution of the collaboration 

The collaboration was very successful from two key aspects. First, the development of the heat-

pulse method relies on successful agreement between measurement and theory, and therefore it is 

important that the development of the sensor and the theory is done together. During the 

development, there were many discussions regarding the sensor design and the appropriate 

assumptions made in the model development. This enabled parallel development of both. 

Second, Kamai visited Kluitenberg and Knight in KSU for a short time to work together. The 

fundamental aspects were developed during this short time of close collaborative work. 
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Achievements 

The main achievement is the demonstrated feasibility for measuring WFD with a robust HP 

sensor. The development is separated to 

three major parts: 

A. The Rigid Heat Pulse (R-HP) Sensor 

Sensors were constructed with four probes 

made from stainless-steel tubes, 2.38-mm in 

diameter and 40-mm long (Figure 1). Three 

of those probes were utilized for the HP 

method, equipped with heater wire (center) 

and thermistors (sides). The additional 

(forth) tube was added to complete a 4-

electrode Wenner array for EC 

measurements. The construction of the 

sensors were similar to the ones reported in 

Kamai et al. (2015). 

B. Analytical solution for water flux density estimations 

In this part, we capitalized on our previous models (Knight et al., 2012; Knight et al., 2016) and 

developed a solution for coupled water flow and heat transfer that accounts for the finite radius 

and finite thermal properties of the heater (emitter) and temperature-sensing (receiver) rods. The 

solution is in the Laplace domain, transformed numerically to the time domain, with details on 

the derivation and the solutions given in Appendix A. The solution is based on three simplifying 

assumptions: (i) the probes may be approximated as perfect conductor rods, (ii) water flow is 

considered unidirectional and parallel to the rod alignment, and (iii) there are no interactions 

between the rods. Please see Appendix A for further details and results. 

C. Numerical model 

The coupling of heat and water were simulated in a two-dimensional finite-element domain, 

using commercial software Comsol Multiphysics. With this model we aimed to capture the main 

physical properties and processes during measurements, neglecting the longitudinal dimension of 

the probes; thus, assuming infinite long probes without a sensor body. The model was designed 

 

Figure 1. The fabricated R-HP sensor in the 

construction of the probes and their electrical 

connections (left), and after the cast of the sensor 

body epoxy (right). 
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for simulating 5 different scenarios (Table 1) that were based on the complexity of the 

approximation of the probes’ thermal properties and the water flow in the domain. The probes 

were either ignored (Scenario 1) or approximated either by perfect conductors or by two regions, 

mimicking the stainless-steel tubing filled with thermally conductive epoxy. The flow was 

approximated either by unidirectional flow, parallel to the rod alignment of the sensor, or by 

Darcy type flow that accounted for the flow around the rods. This enabled numerical simulations 

in different complexity levels, with: Scenario 1 – representing the ILS model; Scenario 2 – 

representing the developed analytical model; Scenario 3 – added complexity of water flow; 

Scenario 4 – added complexity of probes; and Scenario 5 – (the most complex) for mimicking 

the real sensor (without the 3rd dimension). 

Table 1. Simulation scenarios for the numerical model 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Water flow Unidirectional Unidirectional Darcy Unidirectional Darcy 

Probe region No probes PC PC Composite Composite 

 

By using this model together with the analytical models (ILS and the developed one), we 

identified the major assumptions and complexities that were necessary for accurate estimations. 

The results indicate that it is sufficient to assume the probes as perfect conductors and it is 

important to account for the water flow around the probes with a Darcy type flow, which are 

represented by Scenario 3. For further details and results, please refer to Appendix B. 

Water flux density experiments and estimations 

Prior to the WFD experiments, the sensor were immersed in immobilized water (4 g/l agar 

solution) for calibration of probe spacing. For the experiments, the sensors were installed in 

Plexiglas columns with the probes aligned in the column direction and penetrating from the side 

of the column. The column was filled with water and wet-packed with soil. The experimental 

setup was similar to Kamai et al. (2008), with the column connected to a peristaltic pump for 

establishing predetermined flow rates, verified by measuring the outflow rate. The experiments 

were conducted by establishing steady-state flow and executing several heat pulse measurements 

in 15-min intervals. 
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After temperature data collection, the 

analytical model was fit to the data, 

optimizing the volumetric heat capacity, 

thermal conductivity, and heat-pulse 

velocity, from which the WFD density was 

evaluated. Figure 2 depicts this procedure, 

presenting data and model fit from WFD of 

200 cm/d. This is the method we used for 

estimating WFD from the measurements.  

With this procedure we collected data and 

estimated WFD between 50 and 700 cm/d. 

Figure 3 depicts this range and the agreement 

between the applied WFD by the pump and the estimated flux from the HP method.  

The results indicate that the general trend of WFD is captured with the method (Figure 3). Thus, 

the sensor is responding to different flux densities and that response is well-captured with the 

analytical model. The developed analytical solution that was used for the WFD estimations 

presented a significant improvement compared to the ILS model, which showed significant 

underestimation of WFD (results not presented). 

However, even with this new method, 

combining the sensor design and accompanied 

model, we still observe consistent 

underestimation of WFD, especially in the lower 

range (e.g., Figure 3). We attribute these 

underestimations to the lack of the analytical 

model to capture the flow divergence around the 

needle, which could be captured with the 

numerical model. Still, the results indicate on 

relatively accurate estimations of WFD with this 

new methodology. 

  

 

Figure 2. Measured (markers) and model-fit (lines) of 

upstream (red) and downstream (blue) temperature 

response curves with 200 cm per day WFD. 

 

Figure 3. A subset from the experimental results 

comparing the applied and estimated WFD. 
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2. Appendices 

Appendix A: A Semianalytical Solution for Transient Heat Transfer between Two 

Cylindrical Perfect Conductors in Porous Media with Uniform Darcy Flow 

 

Introduction 

Ren et al. (2000) developed a method for measuring soil water flux density. Measurements 

are made with a sensor that consists of three parallel, equally-spaced rods that lie in the same 

plane. The central emitter rod is used to introduce a heat pulse of finite duration. The receiver 

rods are used to measure the temperature rise at locations upstream and downstream from the 

emitter. Specifically, the method involves measuring the maximum difference between the 

temperature rise at the downstream and upstream locations. By using an appropriate solution of 

the heat equation, soil water flux density can determined from the maximum temperature 

difference, if the thermal properties of the medium and the rate and duration of heating are 

known. The line-source solution that Ren et al. (2000) used for this purpose does not account for 

the finite radius and finite thermal properties of the rods. In other words, it assumes that the rods 

have zero radius. It is appropriate to use this solution if the rods have radii that are small 

compared to their spacing, but no work has been done to determine the range of radius to spacing 

ratios for which this solution returns accurate flux measurements. 

To address this issue, we need a version of the Ren et al. (2000) solution that accounts for the 

finite radius and finite thermal properties of the emitter and receiver rods. This is a tall order and 

likely would require the use of a numerical model; however, the work of Knight et al. (2012) 

suggests that the finite properties of the rods can be captured to a large extent by assuming them 

to be cylindrical perfect conductors. This report summarizes work done to derive a version of the 

Ren et al. (2000) solution that treats the three rods as cylindrical perfect conductors. We begin by 
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deriving the Laplace-domain solution for the temperature of the medium with only an emitter rod 

present. That solution is then used to obtain Laplace-domain solutions for the temperature of the 

receiver rods directly downstream and upstream from the emitter. 

 

Problem Formulation 

Consider a variably-saturated porous medium that is incompressible, homogeneous, 

isotropic, and infinite in extent. The porous medium is assumed to be stationary, but water is 

flowing through it at uniform velocity Uw parallel to the x axis. The bulk three-phase system has 

thermal conductivity  , volumetric heat capacity C, and thermal diffusivity , with C   . 

Assuming that the liquid and solid phases are in thermal equilibrium, and that the heat capacity 

of the gas phase is negligible, we have   

 w w
w

C C
U U J

C C


   (1) 

where U is the thermal front advection velocity (Melville et al., 1995),  is the volumetric water 

content of the medium, wC is the volumetric heat capacity of water, and J is the volumetric water 

flux density. The velocity U is a weighted average of the velocities of the water and the 

stationary porous medium (Marshall, 1958). 

Embedded within the porous medium are two parallel rods that are infinite in length and have 

infinite thermal conductivity. The emitter rod has radius 1a  and volumetric heat capacity 1C ; the 

receiver rod has radius 2a  and volumetric heat capacity 2C . The centerlines of the two rods are a 

distance L apart, with 1 2( )a a L  . We assume that the rods are in perfect thermal contact with 

the porous medium surrounding them. Let 1( )V t  and 2 ( )V t  be the temperatures of the emitter and 
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receiver rods, respectively. We derive a closed-form solution in the Laplace domain for 2 ( )V t , 

given an arbitrary heating function ( )t  for the emitter rod. The function ( )t  specifies the rate 

per unit length at which heat is released from the emitter rod. 

As shown in Figure A1a, we use the coordinate system ( , )x y  with the emitter rod centered at 

( , ) (0,0)x y   and the receiver rod centered at ( , ) ( ,0)x y L . We also use polar coordinate 

systems 1 1( , )r   and 2 2( , )r   centered on the emitter and receiver rods, respectively. The 

coordinates 1 1( , )r  satisfy the conditions 2 2 2

1r x y   and 1 1 1 1( , ) ( cos , sin )x y r r   , and the 

coordinates 2 2( , )r   satisfy the conditions 2 2 2

2 ( )r x L y    and 2 2 2 2( , ) ( cos , sin )x L y r r    . 

The temperature of the medium, ( , , )x y t , satisfies the governing equation  

 
2

1 1 2 2

1
0 ; ,

U
r a r a

x t

 
     

   
 (2) 

and it remains bounded at zero in the limit as ,x y  . The medium and both rods must also 

satisfy a zero-temperature initial condition. Although (2) is written in terms of the ( , )x y   

coordinate system, the boundary conditions and energy balances are best expressed in terms of 

the polar coordinates 1 1( , )r   and 2 2( , )r  , with the temperature of the medium denoted by 

1 1( , , )r t   or 2 2( , , )r t  . We assume that the rods are in perfect thermal contact with the 

medium, so the conditions to be satisfied at the surfaces of the two rods are   

 1 1 1 1( , , ) ( ) ; 0 2 , 0a t V t t         (3) 

 2 2 2 2( , , ) ( ) ; 0 2 , 0a t V t t         (4) 

The energy balance for the emitter rod is 

BARD Report - Project 4982 Page 10 of 40



10 

 

 

1 1

2

2 1
1 1 1 1

10

( ) ; 0

r a

dV
a d t a C t

r dt






      







 (5) 

and the corresponding expression for the receiver rod is 

 

2 2

2

2 2
2 2 2 2

20

; 0

r a

dV
a d a C t

r dt






     







 (6) 

The left-hand sides of (5) and (6) are the total flux of heat per unit length into the medium from 

the emitter and receiver rods, respectively. The convective component of the heat flux vanishes 

from these energy balances because boundary conditions (3) and (4) impose constant 

temperatures everywhere on the boundaries 1 1r a  and 2 2r a . Thus, at any point on the 

upstream portions of boundaries 1 1r a  and 2 2r a , the radial component of the heat flux per 

unit length is identical to the radial component of the heat flux at the corresponding point on the 

downstream portions of boundaries 1 1r a  and 2 2r a . In other words, for both rods, the flux per 

unit length entering the rod via convection is identical to the flux per unit length exiting it via 

convection. 

 

Transformation of the Governing Equation and Side Conditions 

This problem can be solved by introducing the modified temperature u, defined by

exp( )u bx   , with (2 )b U  . The utility of this transformation is that the governing 

equation simplifies to  

 
2 2

1 1 2 2

1
0 ; ,

u
u b u r a r a

t


     

 
 (7)  

In terms of the two sets of polar coordinates, the modified temperature is expressed as 
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 1 1 1 1 1 1( , , ) ( , , )exp( cos )u r t r t br       (8) 

 2 2 2 2 2 2( , , ) ( , , )exp( )exp( cos )u r t r t bL br        (9) 

so the boundary conditions become 

 1 1cos

1 1 1 1( , , ) ( ) ; 0 2 , 0bau a t V t e t         (10) 

 2 2cos

2 2 2 2( , , ) ( ) ; 0 2 , 0babLu a t V t e e t         (11) 

and the energy balance expressions for the emitter and receiver rods become 

 1 1

1 1

2

cos 2 1
1 1 1 1

10

( ) ; 0
ba

r a

dVu
a e d t a C t

r dt








      







 (12) 

 2 2

2 2

2

cos 2 2
2 2 2 2

20

; 0babL

r a

dVu
a e e d a C t

r dt








     







 (13) 

The transformation employed here has no effect on the initial condition or the boundedness 

condition. Thus, like the original temperature , the modified temperature u satisfies a zero-

temperature initial condition and it remains bounded at zero as ,x y  . 

 

The Problem in the Laplace Domain 

We solve this problem in terms of functions in the Laplace transform domain, making use of 

the definition 

 

0

ˆ( ) ( )exp( )f p f t pt dt



 




 (14) 
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where ˆ ( )f p  is the Laplace transform of the function ( )f t  and p is the transform variable. 

Taking the Laplace transform of (7) and satisfying the zero initial condition yields the subsidiary 

equation 

 
2 2

1 1 2 2
ˆ ˆ 0 ; ,u u r a r a      (15) 

with 2 2b p     . Likewise, taking the Laplace transforms of (10) and (11) yields the 

boundary conditions 

 1 1cos

1 1 1 1
ˆˆ( , , ) ( ) ; 0 2bau a p V p e        (16) 

 2 2cos

2 2 2 2
ˆˆ( , , ) ( ) ; 0 2babLu a p V p e e        (17) 

and the Laplace transforms of the energy balance expressions are 

 1 1

1 1

2

cos 2

1 1 1 1 1

10

ˆ ˆ ˆ( ) ( )
ba

r a

u
a e d p a C pV p

r








     







 (18) 

 2 2

2 2

2

cos 2

2 2 2 2 2

20

ˆ ˆ ( )babL

r a

u
a e e d a C pV p

r








    







 (19) 

Like the original temperature  and the modified temperature u, the Laplace transform of the 

modified temperature remains bounded at zero as ,x y  . 

 

Solution Centered at the Emitter 

The general solution of (15) that satisfies the boundedness condition is (Carslaw and Jaeger, 1959, p. 

390) 

 
1 1 1 1

0

ˆ( , , ) ( ) cos( )n n

n

u r p c K r n




     (20) 
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where ( )nK  is the modified Bessel function of the second kind and order n. The coefficients nc   in this 

solution are determined by satisfying boundary condition (16). This is accomplished by using the 

expansion (Olver, 1965, p. 376) 

 1 1cos

1 1

0

( 1) ( )cos( )br n

n n

n

e I br n


 



     (21) 

where 0 1  , 2n   for 1n  , and ( )nI  is the modified Bessel function of the first kind and order n. 

The coefficients nc  are determined by using (21) to write boundary condition (16) as an infinite series, 

and it follows that the solution in the Laplace domain is 

 1 1
1 1 1 1 1 1

0 1

( 1) ( ) ( )ˆˆ( , , ) ( ) cos( ) ;
( )

n

n n n

n n

I ba K r
u r p V p n r a

K a





  
   


  (22) 

where 
1
ˆ ( )V p  is to be determined by satisfying (18), the energy balance for the emitter rod. 

The derivative in (18) is obtained by differentiating (22) to yield the expression 

 1
1 1 1 1 1 1

01 1 1

ˆ ( 1) ( )1 ˆ ( ) [ ( ) ( )]cos( )
( )

n

n n
n n

n n

I bau
V p nK r r K r n

r r K a







 
    

 
  (23) 

and the integral in (18) can then be evaluated by using equation (9.6.19) of Olver (1965). Thus, we see 

that (18) becomes 

 
21

1 1 1 1 1 1 1 1

0 1

( 1) ( ) ˆˆ ˆ2 ( ) [ ( ) ( )] ( ) ( )
( )

n

n n
n n

n n

I ba
V p a K a nK a p a C pV p

K a







 
       


  (24) 

and the Laplace transform of the temperature of the emitter rod can therefore be written as 

 1

1

ˆ( )ˆ ( )
2

p
V p

W





 (25) 

with 
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22

11 1
1 1 1 1 1

0 1

( 1) ( )
( ) [ ( ) ( )]

2 ( )

n

n n
n n

n n

I baa p
W p a K a nK a

K a







 
     

 
  (26) 

and 1 1C C  . 

Substituting the expression for 
1
ˆ ( )V p  into (22) yields the desired solution 

 1 1
1 1 1 1 1

01 1

ˆ ( 1) ( ) ( )( )
ˆ( , , ) cos( ) ;

2 ( )

n

n n n

n n

I ba K rp
u r p n r a

W K a





  
   

 
  (27) 

for the Laplace transform of the modified temperature of the medium. This solution is used in the next 

section to derive an expression for 
2
ˆ ( )V p . The Laplace-domain solution for the original temperature is 

obtained by substituting (22) into the expression 1 1cos

1 1 1 1
ˆ ˆ( , , ) ( , , ) brr p u r p e     , which is obtained by 

taking the Laplace transform of (8). Thus, we see that 

 1 1cos 1 1
1 1 1 1 1

01 1

ˆ ( 1) ( ) ( )( )
ˆ ( , , ) cos( ) ;

2 ( )

n
br n n n

n n

I ba K rp
r p e n r a

W K a






  
    

 
  (28) 

We do not explicitly make use of this solution, but it is useful for showing that the theory presented here 

is consistent with existing solutions. In the limit as U  0, the expressions for 1
ˆ ( )V p  and 1 1

ˆ ( , , )r p   

reduce to equations (15) and (16), respectively, of Knight et al. (2012). And, in the limit as 1 0a  , 

solution (28) simplifies to 

 1 1cos

1 1 0 1

ˆ( )
ˆ ( , , ) ( )

2

br p
r p e K r 

   


 (29) 

which is the Laplace transform of the well-known solution for a moving line source (Carslaw and Jaeger, 

1959, p. 261). 
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Solution Centered at the Receiver 

The same approach used to derive (27) can be used to show that the solution of (15) satisfying 

boundary condition (17) is 

 2 2
2 2 2 2 2 2

0 2

( 1) ( ) ( )ˆˆ( , , ) ( ) cos( ) ;
( )

n
bL n n n

n n

I ba K r
u r p V p e n r a

K a






  
   


  (30) 

This solution has essentially the same form as the expression for 1 1
ˆ( , , )u r p , but differs by a factor of 

exp( )bL . At the receiver rod we therefore look for a solution of the form 

 

2 2
2 2 2 2

0 2

1 1
1

01 1

2 2

( 1) ( ) ( )ˆˆ( , , ) ( ) cos( )
( )

ˆ ( 1) ( ) ( )( )
cos( )

2 ( )

( 1) ( )cos( )

n
bL n n n

n n

n

n n n

n n

m

m m

m

I ba K r
u r p V p e n

K a

I ba K rp
n

W K a

d K r m














  
  



  
 

 

   







 (31) 

where the coefficients md  are to be determined by satisfying boundary condition (17). This is 

accomplished by using the addition theorem 

 
1 1 2 2( ) cos( ) ( 1) ( ) ( ) cos( )m

n n m m

m

K r n K L I r m






        (32) 

which is equation (43) of Knight et al. (2016) rewritten in terms of dimensioned variables. Use of this 

addition theorem allows us to write (31) in the form 

 

2 2
2 2 2 2

0 2

1
2 2

01 1

2 2

( 1) ( ) ( )ˆˆ( , , ) ( ) cos( )
( )

ˆ ( 1) ( )( )
( 1) ( ) ( ) cos( )

2 ( )

( 1) ( )cos( )

n
bL n n n

n n

n
mn n

n m m

n mn

m

m m

m

I ba K r
u r p V p e n

K a

I bap
K L I r m

W K a

d K r m






 



 





  
  



   
        

   



 



 (33) 
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After reversing the order of summation in the second term of this expression, we put 2 2r a  and use 

boundary condition (17) and the expansion 

 2 2cos

2 2

0

( 1) ( )cos( )ba n

n n

n

e I ba n


 



     (34) 

to find that the coefficients are 

 2 1

01 2 1

ˆ ( ) ( 1) ( ) ( )( )

2 ( ) ( )

n

m n n n m
m

nm n

I a I ba K Lp
d

W K a K a






   


  
  (35) 

Thus, it follows that (33) becomes 

 

2 2
2 2 2 2

0 2

1
2 2

01 1

1

01 1

( 1) ( ) ( )ˆˆ( , , ) ( ) cos( )
( )

ˆ ( 1) ( ) ( )( )
( 1) ( )cos( )

2 ( )

ˆ ( 1) ( ) ( ) ( 1) (( )

2 ( )

n
bL n n n

n n

n
mn n n m

m

m n n

n m

n n n m m

n n

I ba K r
u r p V p e n

K a

I ba K Lp
I r m

W K a

I ba K L Ip

W K a






 


 






  
  



   
    

  

     
  

  



 

 2 2
2

2

) ( )
cos( )

( )

m

m m

a K r
m

K a











 (36) 

where 
2
ˆ ( )V p  is to be determined by satisfying (19), the energy balance for the receiver rod. 

The derivative in (19) is complicated, but at 2 2r a  it simplifies to 

 2 2

2
2 2 2 1 2 2

02 2 2

1 2

02 1 1 2

ˆ ( 1) ( )1 ˆ ( ) [ ( ) ( )]cos( )
( )

ˆ ( 1) ( ) ( ) ( 1) cos( )1 ( )

2 ( ) ( )

n
bL n n

n n

n nr a

n m

n n n m

m n n m

I bau
V p e nK a a K a n

r a K a

I ba K L mp

a W K a K a








 


 

 
    

 

     
  

   



 

 (37) 

by making use of the Wronskian relation (Olver, 1965, p. 375). We now substitute this result into (19) 

and integrate to obtain the expression 
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2
2 2
2 2 2 2 2 2 1 2

0 2

1 2

01 1 2

( 1) ( )ˆ ˆ( ) 2 ( ) [ ( ) ( )]
( )

ˆ ( 1) ( ) ( ) ( 1) ( )( )

( ) ( )

n

n n
n n

n n

n m
bL n n n m m

m n n m

I ba
a C pV p V p nK a a K a

K a

I ba K L I bap
e

W K a K a







 


 

 
     



    
  

  



 

 (38) 

After rearranging the second term in this expression so that summation on m begins with m = 0, we find 

that the Laplace transform of the receiver rod temperature can be written as 

 12
2

1 2

ˆ( )ˆ ( ) exp( )
4

p W
V p bL

WW





 (39) 

where 1W  is the expression from (26). We also have 

 

22

22 2
2 2 1 2 2

0 2

( 1) ( )
( ) [ ( ) ( )]

2 ( )

n

n n
n n

n n

I baa p
W p a K a nK a

K a







 
     

 
  (40) 

 
1 2

12

0 0 1 2

( 1) ( )[ ( ) ( )] ( 1) ( )
( )

( ) ( )

n m

n n n m n m m m

m n n m

I ba K L K L I ba
W p

K a K a

 
 

 

       
  

  
   (41) 

in which 2 2C C  , 0 1  , and 2m   for 1m . The expression for 
2
ˆ ( )V p  can be substituted into 

(36) to obtain expressions centered at the receiver rod for the modified temperature and original 

temperature of the medium, but we do not present those results here. 

In the limit as U  0, the expression for 
2
ˆ ( )V p  reduces to equation (35) of Knight et al. (2012). In 

the limit as 2 0a  , it simplifies to 

 1
2

01 1

ˆ ( 1) ( ) ( )( )ˆ ( )
2 ( )

n
bL n n n

n n

I ba K Lp
V p e

W K a





  


 
  (42) 
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which is identical to equation (28) evaluated at 1 1( , ) ( ,0)r L  , the location at which the receiver is 

centered. It is also of interest to consider the limiting behavior of solution (39) as 1 0a  . In this case we 

find that 

 2
2

02 2

ˆ ( 1) ( ) ( )( )ˆ ( )
2 ( )

m
bL m m m

m m

I ba K Lp
V p e

W K a





  


 
  (43) 

This expression is identical in form to (42), so we conclude that, if the emitter and receiver rods have 

identical properties, the finite radius and finite heat capacity of the receiver have the same effect on the 

receiver temperature as the finite radius and finite heat capacity of emitter rod. In the limit as 1 2, 0a a  , 

solution (39) simplifies to 

 2 0

ˆ( )ˆ ( ) ( ) exp( )
2

p
V p K L bL


 


 (44) 

which is identical to (29) evaluated at 1 1( , ) ( ,0)r L  . This line-source solution gives the Laplace 

transform of the temperature of the receiver rods for the case where the emitter and receiver rods both 

have zero radius and zero heat capacity. 

For the case of zero flow, Knight et al. (2012) showed that the solution for 
2
ˆ ( )V p  can be expressed 

as the product of three quantities: a transfer function for the emitter rod, a transfer function for the 

receiver rod, and the Laplace transform of the line-source solution evaluated at the location of the receiver 

rod. Comparing the forms of (39) and (44) reveals that such an approach does not hold for the case of 

0U  . 
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Solution for an Upstream Receiver 

To this point we have considered only the case where the receiver rod is located directly downstream 

from the emitter rod. However, if the problem is solved with the flow direction reversed (i.e., using a 

thermal front advection velocity of –U instead of U), the solution corresponds to the case where the 

receiver rod is located a distance L directly upstream from the emitter rod (Figure A1b). Reversing the 

direction of flow has no effect on the temperature of the emitter rod because, as noted earlier, we assume 

that the temperature distribution in the vicinity of the emitter is unaffected by the presence of the receiver 

rod.  

Results for the upstream receiver rod are presented by using 3a  for its radius, 3C  for is its volumetric 

heat capacity, and 3( )V t  for its temperature. In terms of these variables we have 

 13
3

1 3

ˆ( )ˆ ( ) exp( )
4

p W
V p bL

WW


 


 (45) 

with 

 

2 2

3 3 3
3 3 1 3 3

0 3

( 1) ( )
( ) [ ( ) ( )]

2 ( )

n

n n
n n

n n

a p I ba
W p a K a nK a

K a







  
     

 
  (46) 

 
1 3

13

0 0 1 3

( )[ ( ) ( )] ( )
( )

( ) ( )

n n n m n m m m

m n n m

I ba K L K L I ba
W p

K a K a

 
 

 

     
  

  
   (47) 
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where 3 3C C   and 1W  is identical to the expression for 1W  in equation (26). Notice that 13W  is 

similar in form to the expression for 12W  in (41), but does not contain the factors of ( 1)n  and ( 1)m .  

 

In the limit as U  0, the expression for 
3
ˆ ( )V p  reduces to equation (35) of Knight et al. (2012). In 

the limit as 3 0a  , it simplifies to 

 

Figure A1. Coordinate systems used in the derivation of the solution for cases where water moves 

with a) uniform velocity wU  and b) uniform velocity wU . The Cartesian coordinate system ( , )x y  is 

centered on the emitter rod at ( , ) (0,0)x y  , and the distance from the emitter rod is 1r , satisfying 

2 2 2

1r x y  . The receiver rod is centered at ( , ) ( ,0)x y L , so the distance from the receiver rod is 

2r , satisfying 2 2 2

2 ( )r x L y   . Also shown are polar coordinate systems 1 1( , )r   and 2 2( , )r   

centered on the emitter and receiver rods, respectively, where 1 1 1 1( , ) ( cos , sin )x y r r    and 

2 2 2 2( , ) ( cos , sin )x L y r r    . 
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 1
3

01 1

ˆ ( ) ( )( )ˆ ( )
2 ( )

bL n n n

n n

I ba K Lp
V p e

W K a






 


 
  (48) 

It is also of interest to consider the limiting behavior of solution (45) as 1 0a  . In this case we find that 

 3
3

03 3

ˆ ( ) ( )( )ˆ ( )
2 ( )

bL m m m

m m

I ba K Lp
V p e

W K a






 


 
  (49) 

This expression is identical in form to (48), so we conclude that, if the emitter and receiver rods have 

identical properties, the finite radius and finite heat capacity of the receiver rod have the same effect on 

the receiver rod temperature as the finite radius and finite heat capacity of emitter rod. In the limit as 

1 3, 0a a  , solution (45) simplifies to 

 3 0

ˆ( )ˆ ( ) ( ) exp( )
2

p
V p K L bL


  


 (50) 

which gives the Laplace transform of the temperature of the upstream receiver rod for the case where the 

emitter and upstream receiver rods both have zero radius and zero heat capacity. 

 

Special Case of the Solutions for a Heat Pulse of Finite Duration 

The expressions for 
2
ˆ ( )V p  and 

3
ˆ ( )V p  are general solutions in that they are written in terms of ˆ ( )p , 

the Laplace transform of the arbitrary heating function. Here we present specific solutions for 2 ( )V t  and 

3( )V t  for the special case where heat is released from the emitter rod at a constant rate for a finite period 

of time. The heating function is written as 

 
0

0

; 0
( )

0 ;

q t t
t

t t

  
  


 (51) 
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where 0t  is the duration of heating and q  is the rate per unit length at which heat is released from the 

emitter rod. The Laplace transform of this function is 
1

0
ˆ( ) [1 exp( )]p q p pt   , but it is best not to use 

this result to evaluate (39) and (45). Better accuracy can be achieved by inverting (39) and (45) 

numerically for the case of continuous heating. Results for heating of finite duration can then be obtained 

from the continuous heating results by employing the principle of superposition, with a time shift, in the 

time domain. Formally, this involves writing (39) as 

 
C 12

2

1 2

ˆ ( ) exp( )
4

q W
V p bL

pWW





 (52a) 

which is inverted numerically to obtain values of 
C

2 ( )V t  and 
C

2 0( )V t t  for times t of interest. These 

results are then substituted into the expression 

 

C

2 0

2 C C

2 2 0 0

( ) ; 0
( )

( ) ( ) ;

V t t t
V t

V t V t t t t

  
 

  

 (52b) 

to get the rod temperature corresponding to heating of finite duration. The corresponding expressions for 

evaluating (45) are 

 
C 13

3

1 3

ˆ ( ) exp( )
4

q W
V p bL

pWW


 


 (53a) 

 

C

3 0

3 C C

3 3 0 0

( ) ; 0
( )

( ) ( ) ;

V t t t
V t

V t V t t t t

  
 

  

 (53b) 

For the limiting case where the emitter and both receiver rods have zero radius and zero heat capacity, 

we can replace (52a) with the simpler expression 

 
C

2 0
ˆ ( ) ( )exp( )

2

q
V p K L bL

p


 


 (54) 
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which originates from the line source solution (44). Likewise, we can replace (53a) with the simpler 

expression 

 C

3 0
ˆ ( ) ( )exp( )

2

q
V p K L bL

p


  


 (55) 

which originates from the line source solution (50). 

Numerical inversion of (52a), (53a), (54), and (55) was accomplished by using the algorithm of 

Stehfest (1970a, 1970b) with 16 coefficients. Details of the numerical inversion procedure and values for 

the 16 coefficients are provided in Appendix B of Knight et al. (2012). Computations were performed 

with MATLAB (version 8.4, The MathWorks), and the modified Bessel functions of the first and second 

kind were evaluated with the built-in functions BESSELI and BESSELK, respectively. The expressions 

for 1W , 2W , 3W , 12W , and 13W  were evaluated with the first nine terms of the infinite series; however, 

the series in these expressions converge extremely rapidly. Convergence is most rapid for small values of 

b, which correspond to small flow rates, but even for the largest value of b used in this work, results 

correct to four decimal places can be achieved by evaluating only the first two terms of the infinite series 

in 1W , 2W , 3W , 12W , and 13W . 

The Solutions in Dimensionless Form 

The Laplace transforms of 2 ( )V t  and 3( )V t  can be written in dimensionless form by using 
2t L    

for dimensionless time; 
2

0 0t L    for dimensionless heating duration; and 1 1a L  , 2 2a L  , 

and 3 3a L   for the dimensionless radii of the three rods. Dimensionless forms for the temperature of 

the downstream and upstream receiver rods are 
2

2 2 0( ) ( )CL V q t    and 
2

3 3 0( ) ( )CL V q t   , 

respectively. We also define the dimensionless quantities (2 )B bL UL   , L   , and 
2s pL  , 

where s is the dimensionless equivalent of Laplace transform parameter p. And the dimensionless 

equivalent of the relationship 
2 2b p     is 

2 2B s   . 
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In terms of these variables, expressions (52a) and (52b) take the form 

 
C 12
2

0 1 2

ˆ ( ) exp( )
4

Z
s B

sZ Z
 


 (56a) 
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       

 (56b) 

and expressions (53a) and (53b) take the form 

 
C 13
3

0 1 3

ˆ ( ) exp( )
4

Z
s B

sZ Z
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
 (57a) 
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 (57b) 

with 
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For the limiting case where the emitter and receiver rods have zero radius and zero heat capacity, we 

can replace (56a) with the simpler expression 

 
C

2 0

0

1ˆ ( ) ( ) exp( )
2

s K B
s

  


 (63) 

which is the dimensionless version of (54). Likewise, we can replace (57a) with the simpler expression 

 3 0

0

1ˆ ( ) ( ) exp( )
2

s K B
s

   


 (64) 

which is the dimensionless version of (55). 

Inspection of equations (56) and (57) reveals that the dimensionless rod temperatures 2( )    and 

3( )   are functions of eight variables: the dimensionless radii of the three rods, the dimensionless heat 

capacities of the three rods, the dimensionless heating duration, and the dimensionless variable B. 

However, for the special case where all three rods have the same radius (i.e., 1 2 3 0       ) and the 

same heat capacity (i.e., 1 2 3 0    ), we see that 2( )   and 3( )   are functions of only for 

variables (i.e., 0 , 0 , 0 , and B). Furthermore, upon recognizing that the quantity UL   is a sensor-

scale Péclet number (i.e., a Péclet number defined using the spacing between the rods as the characteristic 

length scale), we have 2B Pe  and it follows that 2( )   and 3( )   are functions of 0 , 0 , 0 , 

and the sensor-scale Péclet number. The form of equations (63) and (64) reveals that the line-source 

solutions are functions of only two variables: 0  and the sensor-scale Péclet number. 

 

Character of the Solution 

A key result evident from the solution 2 ( )V t  is that, if the emitter rod and the downstream receiver 

rod have identical properties, their finite radius and finite heat capacity have equal influence in modifying 
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the temperature of the downstream receiver rod. In other words, having an emitter rod of finite radius and 

a downstream receiver rod of zero radius produces the same result as having an emitter rod of zero radius 

and a downstream receiver rod of finite radius. This follows from the fact that equations (42) and (43) 

have the same functional form. A similar result is evident from the solution 3( )V t . In that case, if the 

emitter rod and the upstream receiver rod have identical properties, their finite radius and finite heat 

capacity have equal influence in modifying the temperature of the upstream receiver rod. This follows 

from the fact that equations (48) and (49) have the same functional form. 

 

Effect of Finite Radius 

The effect of the finite radius of the probes can be seen from the results in Figure A2, where the 

dimensionless temperature of the downstream and upstream receiver rods is plotted as a function of 

dimensionless time for three flow rates. In the absence of flow (i.e., Pe = 0), the temperatures of the 

upstream and downstream receiver rods are identical and the results are similar to those in Figure A2 of 

Knight et al. (2012). Comparing the curves for 0 0.05  , 0 0.1  , and 0 0.15   with the line-source 

solution for this zero-flow case shows that the finite radius of the rods causes the heat-pulse signal to 

arrive at the receiver rods slightly earlier in time. This time shift is caused by the fact that the effective 

distance traveled by the heat-pulse signal is smaller when the rods have a finite radius. As expected, this 

effective travel distance decreases as rod radius increases.  
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In the presence of flow (Pe > 0), the finite radius of the rods produces an effect similar to that in the 

absence of flow, at least for relatively early times ( 0 0.125   ). That is, for both upstream and 

 

Figure A2. Dimensionless temperatures 2  and 3  of the downstream receiver and upstream 

receiver rods, respectively, as functions of dimensionless time  for Péclet numbers of Pe = 0, 0.6, and 

1.7. Results are from (56) and (57) with a dimensionless heating duration of 0 = 0.05, a dimensionless 

rod heat capacity of 0 = 1, and dimensionless rod radii of 0 = 0.05, 0.10, and 0.15. Results for the 

line-source solution are from the inversion of (63) and (64). The temperatures of the downstream and 
upstream receiver rods are identical in the absence of flow (i.e., Pe = 0). 
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downstream receiver rods, it causes the heat-pulse signal to arrive slightly earlier in time. But the finite 

radius of the rods also has a marked effect on the maximum temperature rise. For the downstream 

receiver, the maximum temperature rise decreases as the finite radius of the rods increases. For the 

upstream receiver, the maximum temperature rise increases as the finite radius of the rods increases. 

Inasmuch as the method of Ren et al. (2000) is based on the maximum temperature difference between 

the upstream and downstream receiver rods, it is clear from our results that the sensitivity of their method 

likely would decrease as rod radius increases. 

 

Effect of Finite Heat Capacity 

The effect of the finite heat capacity of the probes can be seen from the results in Figure A3, where 

the dimensionless temperature of the downstream and upstream receiver rods is plotted as function of 

dimensionless time for three flow rates. In the absence of flow (i.e., Pe = 0), the temperatures of the 

upstream and downstream receiver rods are identical and the results are similar to those in Figure A3 of 

Knight et al. (2012). The influence of the finite heat capacity of the rods for this zero-flow case can be 

understood by comparing the curves for 0 0.5   and  0 2   with the curve for 0 1  . Relatively less 

energy is needed to raise the temperature of the receiver rods when 0 1  . This causes an increase in the 

magnitude of the heat-pulse signal, and the signal is positively skewed so that the maximum temperature 

rise occurs earlier. Conversely, relatively more energy is needed to raise the temperature of the receiver 

rods when 0 1  . As a result, the magnitude of the heat-pulse signal decreases and the signal is negative 

skewed so that the maximum temperature rise occurs later. 

In the presence of flow (Pe > 0), the effect of the finite heat capacity of the rods appears to be more 

pronounced for the downstream receiver rod and less pronounced for the upstream receiver rod. This is 

most likely due to the fact that, for Pe > 0, the temperature rise is greater in magnitude for the 
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downstream receiver and smaller in magnitude for the upstream receiver. And we expect rod heat 

 

Figure A3. Dimensionless temperatures 2  and 3  of the downstream receiver and upstream 

receiver rods, respectively, as functions of dimensionless time  for Péclet numbers of Pe = 0, 0.6, and 

1.7. Results are from (56) and (57) with a dimensionless heating duration of 0 = 0.05, a dimensionless 

rod radius of 0 = 0.1, and dimensionless rod heat capacities of 0 = 0.5, 1, and 2. Results for the line-

source solution are from the inversion of (63) and (64). The temperatures of the downstream and 
upstream receiver rods are identical in the absence of flow (i.e., Pe = 0). 
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capacity effects to scale according to the magnitude of the temperature rise. 

 

Results for a Typical Sensor 

Here we present results for a typical sensor in terms of dimensioned variables. The results are for a 

sensor having three rods, each with a radius of 0a = 6.35  104 m. The three rods are equally spaced, 

with a rod spacing of  L = 6.0  103 m. Thus, the ratio of the rod radius and rod spacing is 0 0a L   = 

0.105833. The heat capacity of the rods was calculated by using the expression 

 

2 2

e e
0 e ss

0 0

1
a a

C C C
a a

    
      
     

 (65) 

where ea  is the radius of the epoxy-filled region within the rods, eC  is the volumetric heat capacity of 

the thermally conductive epoxy, and ssC  is the volumetric heat capacity of stainless steel. The results 

presented here were obtained using the values ea = 4.19  104 m, eC = 1.64 MJ m3 K1, and ssC  = 3.77 

MJ m3 K1 from Knight et al. (2012). When used in equation (65), these values yield the result 0C = 

2.842615 MJ m3 K1 for the volumetric heat capacity of the rods. All results were generated using a 

heating rate of q = 100 W m1, a heating duration of 0t = 8 s, and the thermal properties C = 3.07 MJ m3 

K1 and  = 1.95 W m1 K1 for a water-saturated Hanlon sand (Knight et al., 2012). For this combination 

of soil and sensor, the ratio of the rod and soil heat capacities is 0 0C C  = 0.925933. Results were 

generated for soil water flux densities of J = 0, 100, and 1,000 cm d1, which correspond to thermal front 

advection velocities of U = 0, 1.575884  105 and 1.575884  104 m s1. They also correspond to Péclet 

numbers of Pe = 0, 1.488604  101, and 1.488604 when the heat capacity of water is taken to be wC  = 

4.18 MJ m3 K1. 
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As expected, the results for this combination of soil and sensor (Figure A4) show the same general 

behavior as the results in Figures A2 and A3. The temperatures of the upstream and downstream receiver 

rods are identical for the case of zero flow (i.e., Pe = 0). But as the soil water flux increases, the 

temperature rise of the upstream receiver rod decreases and the temperature rise of the downstream 

receiver rod increases. The results also show that deviation between the line-source solution and solutions 

2V  and 3V  clearly become greater as the soil water flux density increases. 

 

Summary and Next Steps 

The method of Ren et al. (2000) for measuring soil water flux density is based on a line-

source solution that does not account for the finite radius and finite thermal properties of the 

sensor’s rods. In this report, we derive solutions that partially account for the finite properties of 

the emitter and two receiver rods. Specifically, we have derived Laplace-domain solutions for 

the temperature of the receiver rods directly downstream and directly upstream from the emitter. 

These solutions only partially account for the finite properties of the emitter and receiver rods 

because they were derived by assuming that the rods behave like cylindrical perfect conductors. 

The solutions are more difficult to evaluate than the line-source solution of Ren et al. (2000); 

however, compared to the line-source solution, little additional time is required to complete the 

evaluation. Thus, from a computational perspective, the solutions derived in this report have the 

desirable property that they could replace the line-source solution in the flux estimation method 

of Ren et al. (2000). What remains to be determined is whether or not the new solutions improve 

upon the accuracy of flux estimates obtained with the simpler line-source solution. 
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Figure A4. Temperatures 2V  and 3V  of the downstream receiver and upstream receiver rods, 

respectively, as functions of time t for Péclet numbers of Pe = 0, 0.149 and 1.49. Results are from (52) 

and (53) with a heating rate of q = 100 W m1 and a heating duration of 0t = 8 s. The results were 

obtained using the following rod and soil properties: 0a = 6.35  104 m, L = 6.0  103 m, 0C = 

2.842615 MJ m3 K1, C = 3.07 MJ m3 K1, and  = 1.95 W m1 K1. Results for the line-source solution 
are from the inversion of (54) and (55). The temperatures of the downstream and upstream receiver 
rods are identical in the absence of flow (i.e., Pe = 0). 
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Nomenclature 

Coordinate systems 

( , )x y  Cartesian coordinate system centered on the emitter rod 

1 1( , )r   polar coordinate system centered on the emitter rod 

2 2( , )r   polar coordinate system centered on the receiver rod 

 

Other variables and constants 

0a  radius of the rods for the case where all three rods have the same radius [m] 

1 2 3, ,a a a  radii of the emitter, downstream receiver, and upstream receiver rods [m] 

ea  radius of the epoxy-filled region in the rods [m] 

b constant [m−1], defined as (2 )b U   

nc  indexed coefficient in the Laplace-domain solution centered at the emitter 

B dimensionless constant, defined as 2B bL UL    

C volumetric heat capacity of the bulk porous medium [J m3 K1] 

eC  volumetric heat capacity of thermally conductive epoxy [J m3 K1] 

ssC  volumetric heat capacity of stainless steel [J m3 K1] 

wC  volumetric heat capacity of water [J m3 K1] 

0C  volumetric heat capacity of the rods for the case where all three rods have the same heat 

capacity [J m3 K1] 

1 2 3, ,C C C  volumetric heat capacities of the emitter, downstream receiver rod, and upstream receiver 

rods [J m3 K1] 

md  indexed coefficient in the Laplace-domain solution centered at the receiver 

f arbitrary function of time used to define the Laplace transform of a function 

( )nI  modified Bessel function of the first kind and order n 

J volumetric flux density of water [m3 m2 s1] 

( )nK  modified Bessel function of the second kind and order n 

L distance between the centerlines of the emitter and receiver rods [m] 
m,n integers 
p Laplace transform variable [s−1] 

Pe Péclet number [-], defined as Pe UL   

q rate per unit length of heat released from the emitter rod [W m−1] 

s dimensionless Laplace transform variable, defined as 2s p L   

t time [s] 

0t  heating duration [s] 

u modified temperature of the porous medium [K], defined as exp( )u bx    
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U thermal front advection velocity [m s−1] 

wU  velocity of water in the porous medium [m s−1] 

1 2 3, ,V V V  temperatures of the emitter, downstream receiver and upstream receiver rods [K] 

0  dimensionless radius of the rods for the case where all three rods have the same 

radius, defined as 0 0a L   

1 2 3, ,    dimensionless radii of the emitter, downstream receiver, and upstream receiver rods, 

defined as 1 1a L  , 2 2a L  , and 3 3a L   

0  ratio of the rod and porous medium volumetric heat capacities for the case where all 

three rods have the same heat capacity [-], defined as 0 0C C   

1 2 3, ,    dimensionless heat capacity ratios, defined as 1 1C C  , 2 2C C  , 3 3C C   

,m n   indexed constants [-] that are assigned integer values of either 1 or 2.   

2 3,   dimensionless temperatures of the downstream and upstream receiver rods, defined as 
2

2 2 0( )CL V q t  , 2

3 3 0( )CL V q t   

 volumetric water content of the porous medium [m3 m3] 

 thermal diffusivity of the bulk porous medium [m2 s1], defined as C    

 thermal conductivity of the bulk porous medium [W m1 K1] 

 coefficient [m2], defined as 
2 2b p     

 dimensionless coefficient, defined as L   , 
2 2B s    

 dimensionless time, defined as 
2t L    

0  dimensionless heating duration, defined as 2

0 0t L    

 temperature of the porous medium [K] 

 arbitrary heating function for the emitter rod; a function of time specifies the rate per 

unit length at which heat is released from the emitter rod  
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Appendix B: A Numerical Solution for Data Assimilation 

Temperature data are generate using a finite-element model that accounts for the thermal 

properties of all the materials and the flow around the probes (Scenario 5, Table 1). Using this 

complexity level we simulated two sensor designs: 

 The conventional heat-pulse (HP) sensor with probes of 1.27 mm diameter and 6 mm center-

to-center spacing. 

 The rigid HP (R-HP) sensor with probes of 2.38 mm diameter and 7 mm center-to-center 

spacing (Figure 1). 

The simulations included: 

 Four saturation levels: 10, 20, 30, and 37.1% volumetric water content (VWC), with the 

latter being the saturated case. 

 Eight WFD magnitudes: 1, 5, 10, 50, 100, 200, 500, and 1000 cm/d. 

 

Estimation of Water Flux Density (WFD) 

The assimilated temperature data is used as temperature observations for fitting the analytical 

models: ILS and perfect conductors (Appendix A). For fitting, we assume that the thermal 

properties and center-to-center probe 

spacing are known, and optimize the 

WFD.  

Figure B1 presents an example of 

assimilated results and the fit of the 

perfect conductors model (ILS not 

shown. 

Figure B2 depicts the WFD estimation 

accuracy, comparing assimilated 

(applied) WFD and estimated ones. 

Estimations of WFD are significantly 

improved with the perfect conductors 

 

Figure B1. Upstream (blue) and Downstream (red) 

results of the finite element (FE) model and their 

fit with the perfect conductors model. The results 

were generated with simulation conditions of 30% 

VWC and 100 cm/d WFD. 
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model. Both, ILS and perfect conductors models underestimate WFD. However, these 

underestimations are more significant with the ILS model. 

As the soil gets drier, the underestimation with the ILS model is more significant. However, the 

estimations with the perfect conductors model improve in drier conditions. We attribute that to 

difference between the heat capacity of the soil and the probes. That difference is larger in drier 

conditions, which increases the underestimations in the ILS model, because there are no probes 

in that model. However, because the perfect conductors model accounts for the heat capacity, 

estimations improve with that model. 

The other noticeable difference is the change in WFD underestimations of data that was collected 

from simulations of the conventional HP sensor and the rigid HP sensor. Comparing estimations 

of either ILS or perfect conductors models, the underestimations of the conventional HP sensor 

(Figure B2, left side) are less significant than those of the rigid HP sensor. We attribute these 

differences to the size of the probes. Obviously, the ILS model, which does not account for the 

probes, underestimates WFD as the probes are larger. However, even in the perfect conductors 

model the underestimations are more significant in the R-HP sensor. We attribute that to the flow 

of water around the probes. The perfect conductors model considers uniform (unidirectional) 

flow, so it does not account for heat that is convected perpendicular to the probe alignment. 

Therefore, the heat that is convected away with the numerical FE is interpreted as lower WFD 

with that analytical perfect conductors model. 
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Figure B2. WFD estimations from the conventional HP (left plots) and the R-HP (right plots). Each set of 

plots (left and right) are presents in linear and log-log scales. Each row represents different water 

content, with WFD estimations conducted with the ILS and perfect conductors models. 
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